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Regular Sparse Crossbar Concentrators

Weiming Guo, Member, IEEE,

and A. Yavuz Oruç, Senior Member, IEEE

Abstract —A bipartite concentrator is a single stage sparse crossbar
switching device that can connect any m of its n ≥ m inputs to its m
outputs, possibly without the ability to distinguish their order. Fat-and-
slim crossbars were introduced recently to show that bipartite
concentrators can be constructed with a minimum number of
crosspoints for any number of inputs and outputs. We generalize these
graphs to obtain bipartite concentrators with nearly a fixed fanout
without altering their (n - m + 1)m crosspoint complexity. We also
present an O(log n)-time algorithm to route arbitrary concentration
assignments on this new family of fat-and-slim crossbars.

Index Terms —Bipartite graph, concentrator, crosspoint complexity,
regular sparse crossbar.

————————   ✦   ————————

1 INTRODUCTION

A number of models have been introduced to deal with concen-
tration operations in multiprocessor systems. The most easily un-
derstood among these models is a concentrator switch. An (n, m)-
concentrator is a switching device with n inputs and m outputs
that permits nonoverlapping paths between any m of the n inputs
and the m outputs. These devices have been studied extensively in
the interconnection network literature, and key theoretical results
point out that (n, m)-concentrators can be constructed with O(n)
crosspoints and O(log n) delay [10], [2], [1]. Despite these findings,
many of the explicit concentrator designs reported in the literature
use O(n log n) crosspoints, and typically rely on butterfly graphs
[4], and adaptive binary sorting networks [8].

In this paper, we present a number of new sparse crossbar con-
centrators [7], [9] whose performance with respect to crosspoint
complexity matches the previously reported sparse crossbar con-
centrators while offering regular fanin and fanout for any number
of inputs and outputs. The crux of these new concentrator designs
is a transformation theorem that can be applied to any sparse
crossbar concentrator to convert it into another sparse crossbar
concentrator. Indeed, all the new sparse crossbar concentrators
given in the paper are obtained by transforming fat-and-slim
crossbars using this theorem.1 We also describe an efficient algo-
rithm to route arbitrary concentration assignments on these new
sparse crossbars.

2 PRELIMINARY FACTS

An (n, m, c)-sparse crossbar concentrator is a bipartite graph *�=
(I, O, E), with a set of n inputs (I), a set of m outputs (O), and a set
of edges (E) such that there exist a matching between any c or
fewer inputs and an equal number of outputs, where c is called its
capacity. * is called a full capacity concentrator when c = m, and it is
called a bounded capacity concentrator, otherwise. The edges in E
are called the crosspoints of *. The number of crosspoints of *
gives its crosspoint complexity. The number of outputs (inputs) to
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which an input (output) is connected is called its fanout (fanin), and
the maximum number of outputs (inputs) to which an input
(output) in * is connected is called the fanout (fanin) of *. A sparse
crossbar is called regular if both the fanouts of its inputs and the
fanins of its outputs differ by no more than two.

The set of outputs (inputs) which are connected to a set of in-
puts (outputs) X is called the neighbor set of X, and denoted N(X).
The set of outputs (inputs) which are not connected to a set of in-
puts (outputs) Y is called the null set of Y, and denoted F(Y).

The direct sum *1 + *2 of sparse crossbars *1 = (I1, O, E1) and
*2 = (I2, O, E2) is another sparse crossbar given by *1 + *2 = (I1 <
I2, O, E1 < E2).

An (n, m)-sparse crossbar *� = (I, O) is called a fat-and-slim
crossbar if any n - m of its n inputs are connected to all the outputs
in O, and each of the remaining m inputs is connected to a distinct
output. For notational convenience, we will represent an (n, m)-fat-
and-slim crossbar * by an m ¥ n adjacency (binary) matrix, A

*�
=

[ai,j]m¥n, where a “1” entry in column i and row j represents a
crosspoint between input i and output j. An (n, m)-fat-and-slim
crossbar then has the adjacency matrix [Jm,n-m|Im], where Jm,n-m
denotes a m ¥ (n - m) matrix of “1”s, and Im denotes the m ¥ m
identity matrix.2

We will need the following well-known theorem to prove the
main results in the next two sections.

HALL’S THEOREM. Let A be a finite set and A1, A2, º An be arbitrary
subsets of A. There exist distinct elements ai Œ Ai, 1 £ i £ n, iff the
union of any j of A1, A2, º An contains at least j elements, 1 £ j £ n.

3 FULL CAPACITY REGULAR SPARSE CROSSBARS

We begin with the following restatement of the fat-and-slim cross-
bar construction introduced in [9], when n = pm for some positive
integer p.

COROLLARY 3.1. Let *�= (I, O) be a (pm, m)-sparse crossbar. Let O =
{1, 2, º, m}, and suppose I is partitioned into p sets: I1, I2, º, º, Ip,
where Ik = {(k, 1), (k, 2), º, (k, m)}. Suppose that every input in
set Ik, 1 £ k £ p - 1 is connected to all outputs in O and input j of
set Ip (1 £ j £ m) is connected to output j. Then, * is an optimal
(pm, m)-concentrator.

A regular fat-and-slim crossbar is constructed by rearranging
the adjacency matrix of a fat-and-slim crossbar. More specifically,

let row i of A
*

 be divided into p sections:

Si,j = (ai,jm-m+1, ai,jm-m+2, º, ai,jm), 1 £ j £ p, 1 £ i £ m.       (1)

It is easy to see that Si,j, 1 £ j £ p - 1 consists of m “1”s, and Si,p con-
sists of only one “1” entry, 1 £ i £ m. Furthermore, the following
lemma holds.

LEMMA 3.1. Let * = (I, O) be a (pm, m)-fat-and-slim crossbar, and let Y be

any subset of r £ m rows in the adjacency matrix A
*�

, of *. Suppose

that, for each y Œ Y, entries in the columns in Sy,p of A
*

 are ex-

changed with entries in the columns in Sy,a without altering their

relative order, where 1 £ a £ p - 1, and let this new matrix be de-
noted by A~

*
. Then the sparse crossbar 

~
*  that corresponds to ma-

trix A~
*

 is an optimal (pm, m)-concentrator.

PROOF. Obviously, the crosspoint complexity of * has not been
affected by the transformation given in the lemma, so that

2. The words “row” and “column” will be used interchangeably with
words “output” and “input,” respectively.

~
*  has the same crosspoint complexity as *, and is, there-

fore, optimal. Hence, we only need to show that 
~
*  is a con-

centrator. Let A~
*

 be partitioned into p m ¥ m-matrices so

that A A A Ap~
~ ~ ~

*
= 1 2 � , where 

~
Ai  is an m ¥ m matrix,

1 £ i £ p. The following two properties are easily verified.

PROPERTY 1. The diagonal of 
~
Ai , 1 £ i £ p consists of “1” entries.

PROPERTY 2. The null set of any row of 
~
*  is a subset of the columns in

~
Ai  for some j, 1 £ j £ p .

Now, let X be any subset of k £ m columns. If X Õ Ij for any j,

1 £ j £ p, then, by Property 1, |N(X)| ≥ k. Suppose X IjÕ/ ,

for all j, 1 £ j £ p, then there must exist columns xq, xr Œ X

such that xq Œ Iq and xr Œ Ir, where 1 £ r π q £ p. Furthermore,

we must have |N({xq, xr})|= m, since, if a row y is not in the

neighbor set of either xq or xr, then xq and xr must both be-

long to F(y), i.e., the null set of y, contradicting Property 2. It
follows that the union of the neighbor sets of any k inputs of
~
*  must have at least k outputs and, by Hall’s theorem, 

~
*  is

a concentrator. �

We use this result to obtain a regular (pm, m)-fat-and-slim crossbar.

THEOREM 3.1. Let * = (I, O) be a (pm, m)-fat-slim-crossbar, g = Îm/p˚,

b = m - g  ¥ p, and let Si,j, 1 £ i £ m, 1 £ j £ p be defined, as in (1).
Suppose 

~
( , )* = I O  is a (pm, m)-sparse crossbar obtained by

modifying the adjacency matrix A
*

 of * as follows:

For i = 1 to b ,
For �j = 1 to g  + 1,

Exchange S(i-1) (g +1) + j, i with S(i-1) (g +1) + j,p

end
end

For i = b + 1 to p - 1,
For j = 1 to g ,

Exchange S(i -1) g + b + j, i with S(i -1) g + b + j,p

end
end

Then, 
~

( , )* = I O  is an optimal regular (pm, m)-concentrator with
a minimum crosspoint complexity.

PROOF. From Theorem 3.1, we know that 
~
*  has a minimum num-

ber of crosspoints, and all of its outputs have the same fanin.
Furthermore, the construction given in the theorem moves

g + 1 rows from the submatrix Ap into each of the submatri-

ces A1, A2, º, Ab, and g rows into each of the submatrices Ab + 1,

Ab + 2, º, Ap-1. Therefore, the fanout of the inputs in set Ii, 1 £ i

£ b is either m - g - 1 or m - g, and the fanout of the inputs in

set Ij, b + 1 £ j £ p is either m - g or m - g + 1. It follows from
Lemma 3.1 that 

~
*  is a regular (pm, m)-concentrator with a

minimum number of crosspoints. �

We illustrate this construction in Fig. 1, for n = 15, m = 5, p = 3,
and g = 1. It is seen that the fanout of any input that belongs to I1
or I2 is either 3 or 4, and the fanout of any input that belongs to I3
is either 4 or 5.
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We have just given a construction for a family of optimal regu-
lar (pm, m)-sparse crossbar concentrators. In the following, we
extend this construction to any number of inputs and outputs. As
we will see, the basis for this extension is a powerful result
(Theorem 3.2 and Corollary 3.2) that can be used to balance the
fanout in many sparse crossbar concentrators.

We first state the following lemma, which is a direct conse-
quence of Hall’s theorem.

LEMMA 3.2. Any c inputs of an (n, m)-sparse crossbar network are connected
to at least c outputs if and only if the adjacency matrix of * does not
contain an (m - k + 1) ¥ k zero submatrix for all k; 1 £ k £ c.

Let A
*

 be the adjacency matrix of an (n, m)-sparse crossbar

network * and let x and y be any two columns in A
*

. We say that

column x covers column y if N(y) Õ N(x).

THEOREM 3.2. Let x and y be any two columns in the adjacency matrix
of an (n, m)-sparse crossbar *, where x covers y. Let
a a ai x i x i xr1 2, , ,, , ,�  be a block of r “1”s in x, and let B be a matrix

obtained by exchanging ai xl ,  with ai yl , , 1 £ l £ r. If A
*

 does not

have an (m - k + 1) ¥ k zero submatrix, where 1 £ k £ n, then nei-
ther does B.

PROOF. Suppose A
*

 does not have an (m - k + 1) ¥ k zero submatrix
but B does.

1) If the k columns in the zero submatrix include neither

column x nor y, then, obviously, A
*

 should also contain

the same (m - k + 1) ¥ k zero submatrix, a contradiction.
2) If the k columns in the zero submatrix in B include col-

umn y but not x, then, since every row in column y of B
contains a “1” whenever the corresponding row in col-

umn y of A
*

 contains a “1,” and column x is not included

in the zero matrix, A
*

 should also contain the same (m -
k + 1) ¥ k zero submatrix, a contradiction.

3) If the k columns in the zero submatrix include column x

but not y, then, since column x of B covers column y of A
*

exchanging column x with y in A
*

 shows that A
*

 must

contain an (m - k + 1) ¥ k zero submatrix, a contradiction.
4) If the k columns in the zero submatrix include both col-

umn x and y, then the zero submatrix in B can only in-
clude the unchanged rows of column x and y. Therefore,

A
*

 should also have the same (m - k + 1) ¥ k zero sub-
matrix, a contradiction.

The lemma follows. �

The following is a direct corollary of Theorem 3.2 and Lemma 3.2.
COROLLARY 3.2. Let * be a sparse crossbar concentrator with capacity

c £ m and two inputs x and y, where x covers y. If a subset of “1”
entries in x are exchanged with the corresponding rows in y, then
the resulting sparse crossbar is also a concentrator with capacity c.

Furthermore, we can use this result to obtain a banded sparse
crossbar concentrator.

DEFINITION. An (n, m)-sparse crossbar * is called banded if its adja-

cency matrix A
*

 = [ai,j] is given by

a
i j i n m
j i j i n mi j, = £ £ + -

< > - +
%
&
'
1
0

if 
if  or (2)

for i = 1, 2, º, m.

THEOREM 3.3 Every banded (n, m)-sparse crossbar is an optimal (n, m)-
concentrator.

PROOF. It follows from Corollary 3.2. �

We will now use a banded sparse crossbar concentrator to ob-
tain an optimal regular (n, m)-sparse crossbar concentrator for any
positive integers n and m £ n.

Let

a =

<

- < ≥

- ≥ ≥

%

&

K
K

'

K
K

- +

- + - + - +

- + - + - +

n m m
n

m

n m m
n

n m m
n

n m m
n

m

n m m
n

n m m
n

n m m
n

m

n

n

n

1 3
2

1 1 1 3
2

1 1 1 3
2

0 5

0 5

1 6

1 6 1 6 1 6

1 6 1 6 1 6

if 

if  and 

if  and 

. ,

. ,

     (3)

b = n - m - a + 1.

Let *1 be a (b, m)-full crossbar and *2 be an (m + a - 1, m)-

banded crossbar concentrator Let * = *1 + *2. It can be verified
that * is an (n, m)-sparse crossbar concentrator whose adjacency

matrix A
*

 = [ai,j] is given by

Fig. 1. A regular (15, 5)-concentrator.

Fig. 2. Illustration of the induction step in Theorem 3.3.
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a
i j i n m

j
j i j i n m

i j, =
+ £ £ + - +
£ £
< < + > + - +

%

&
K

'K

1
1 1
0

if 
if 
if  or 

b b
b

b b b
        (4)

for i = 1, 2, º, m.

A
*

 can be decomposed as A
*

 = [Jm¥b|Um¥(a-1)|Bm¥(n-b-2a+2)|

Lm¥(a -1)], where

Jm¥b is a matrix of “1”s,
Um¥(a-1) is an upper triangular matrix,
Bm¥(n-b-2a+2) is a banded matrix,
Lm¥(a-1) is a lower triangular matrix.

Fig. 3 shows the decomposition of a sparse crossbar concentrator.

LEMMA 3.3. Let H = [J|U|L] where J, U, L are matrices described above.
If n m≥ 3

2 , then matrix H can be rearranged using the column ex-
change operation described in Theorem 3.2 to obtain a matrix 

~
H ,

in which every column has either a ± 1 or a “1”s.

PROOF. See the Appendix.

We now have our main theorem.

THEOREM 3.4. For any positive integer n and m £ n, the (n, m)-fat-and-
slim sparse crossbar concentrator can be rearranged to obtain a
sparse crossbar concentrator with fanout of either a ± 1 or a,
fanin of n - m + 1 and minimum number of crosspoints, where a
is defined by (3).

PROOF. Let A
*

 = [Jm¥b|Um¥(a-1)|Bm¥n-b-2a+2|Lm¥(a-1)], where J, U, B, L
are defined as before. We already established that a fat-and-
slim crossbar can be expressed as a direct sum of a full

crossbar and banded sparse crossbar, and that if n ≥ 3m/2,
then the columns of this direct sum can be balanced to have

a or a ± 1 crosspoints each without altering its concentra-
tion property. It remains to be shown that the statement also

holds when n m< 3
2 . In this case, suppose that we assign a

“1”s to each column in B and (b + 2a - 2)(a + 1) “1”s to the
columns in H, where H is the direct sum of J, U, and L as be-
fore. Then the number of “1”s which are left unassigned is
given by

g = (n - m + 1)m - an - (b + 2a - 2),            (5)

Since (n - m + 1)m - an ≥ 0, we must have g ≥ -(b + 2a - 2).

Thus, if g £ 0, then the average number of “1”s in H must

obviously be in the region of [a, a + 1]. Therefore, one can
use the same procedure described in the proof of Lemma 3.3
to balance the columns in H so that each of its columns has

either a or a + 1 “1”s. On the other hand, if g > 0, then the
average number of “1”s over the columns in H is more than

a + 1. In this case, we can preserve g
am- +( )1  columns of “1”s

in J, and balance the remaining columns in J with the col-
umns in U and L so that each of the balanced columns has

a + 1 “1”s. Now, the inequality

0 £ (n - m + 1)m - an £ n,

together with (5), implies g £ n - (b + 2a - 2), where n - (b +
2a - 2) is the number of columns in B. Therefore, one can
distribute the extra g  “1”s from the unbalanced columns in J
to the columns in B with each having at most one additional
“1.” The proof follows. �

Fig. 4 shows how the crosspoints in the sparse crossbar of Fig. 3
are balanced by distributing the “1”s in J into U and L, when n <
3m/2. In this case, g = -6 < 0 so that crosspoints are balanced with-
out splitting J into two parts, as outlined in the proof.

4 ROUTING

Routing a concentrator amounts to activating some of its k
switches such that a desired set of k, 1 £ k £ c inputs can be con-
nected to some k distinct outputs by disjoint paths, where c is the
capacity of the concentrator. In the following, we present a routing
algorithm for an optimal regular (pm, m)-sparse crossbar concen-
trator, where p and m/p are positive integers. Algorithms for other
values p and m can be obtained by modifying the algorithm pre-
sented here.

LEMMA 4.1 Any m inputs of an (n, m)-full crossbar can be routed to m
outputs in O(log n) time on a binary tree of n processors and
O(n) time on a single processor.

PROOF. See [3]. �

Let G = (I, O) be an optimal regular (pm, m)-sparse crossbar
concentrator, as defined in Theorem 3.1, where p and m/p are in-
tegers, O = {1, 2, º, m}, and I is partitioned into p sets, I1, I2, º, º,
Ip, where Ii = {(i, 1), (i, 2), º, (i, m/p)}.

Let Ni,j be the neighbor set of input (i, j) Œ Ii,

V N N Ni i i i m
p

= « « «{ }, , ,1 2 � ,

Fig. 3. An (11, 5)-concentrator decomposed into four sections. Fig. 4. The (11, 5)-concentrator in Fig. 3 after it is balanced.
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Ui = O\Vi , and Wi be the inputs in Ii that are connected to at least
one output in Ui. In Fig. 5, U1 = {1, 2}, V1 = {3, 4, 5, 6}, and W1 = {(1, 1),
(1, 2)}.

From the procedure described in Theorem 3.1, one can see that

|Ui| = m/p, |Wi| = m/p, and |Vi| = m - m/p. Furthermore, all

the inputs in set Ii are connected to outputs in set Vi by a full

crossbar, and every input in Wi is connected to a distinct output in

set Ui. We also note that Ui > Uj = ∆, 1 £ i π j £ p, and

U mii

p

=Â =
1

.

Let R be a subset of k £ m inputs that request to be routed to k

outputs. We select the first m - k unused inputs in set I1 and com-

bine them with set R to form a new set of inputs 
~
R , where 

~
R m= .

We also let R R Ii i= «~
, 1 £ i £ p, and note that R mii

p

=Â =
1

.

Algorithm 4.1. Let Ri, Ui, 1 £ i £ p, be defined as above.

1) For i = 1 to p,

Let a

if R m

if R m

if R
i

i
m
p

m
p i

m
p

i
m
p

=
> -

£ £ -
<

%

&
KK

'
K
K

2

1

0

2) If aj = 2, for some j, 1 £ j £ p then

2.1) Assign inputs in set Rj > Wj to outputs in set Uj.
2.2) Assign all the inputs in sets Ri (i π j) to the unassigned

outputs in Uj using Lemma 4.1.
2.3) Assign the remaining inputs in Rj to the rest of the m -

m/p outputs in Vj by assigning input (j, l) to output l,
where l Œ [1, m].

3) Else, let (for 1 £ i £ p)

3.1) 

b
if R

if Ri
i

m
p

i
m
p

=
≥
<

%
&
K

'K

0

1

3.2) 

r a s bi j
j

i

i j
j

i

= =
= =
Â Â

1 1

,

3.3) 

d
r if a
s r if a

R R U U

i
i i

i p i

d i d ii i

=
=

+ =
%
&
'

¢ = ¢ =

1
0

,

3.4) Let Pi be the subset of the first m
p  inputs in ¢Ri , 2 £ i £

rp, and let Q R Pi i i= ¢ \ . Assign the inputs in Pi to ¢-Ui 1,

2 £ i £ rp
3.5) Assign the inputs in ¢ ¢ ¢ ¢+ +R R R R Q Q Qr r p rp p p1 2 1 2 3, , , , , , , ,� �

to ¢ ¢ ¢+U U Ur r pp p
, , ,1 � .

THEOREM 4.1. Any k inputs of an optimal regular (pm, m)-concentrator
can be assigned to the k outputs in O(log n) time on a binary tree of
n processors, and O(n) time on a single processor by Algorithm 4.1,
where n = pm.

PROOF. See [3]. �

It follows that the routing time of an optimal regular sparse
crossbar concentrator matches the time complexity of routing a
full crossbar.

We use Fig. 5 to illustrate Step 2 of this algorithm. Let the re-
quested inputs be (1, 1), (1, 3), (1, 4), (1, 5), (1, 6), (2, 4). So |R1| = 5,
|R2| = 1, and |R3| = 0. Since |R1| > m - m/p = 6 - 2= 4, the algo-
rithm will run Step 2 as follows:

1.1) Assign input (1, 1) to output 1.
1.2) Assign input (2, 4) to output 2.
1.3)  Assign inputs (1, 3), (1, 4), (1, 5), (1, 6) to outputs 3, 4, 5, 6.

We use Fig. 6 to illustrate Step 3 of this algorithm.
The requests are partitioned into five sets R1, R2, R3, R4, R5 as

shown in Fig. 6a.
After Step 3.3, they are assigned new indexes ¢ ¢ ¢ ¢ ¢R R R R R1 2 3 4 5, , , ,

as shown in Fig. 6b.

In Step 3.4, the inputs in P2 are connected to outputs in ¢U1 , and

the inputs in P3 are connected to outputs in ¢U2  as shown in Fig. 6c.

In Step 3.5, inputs in ¢ ¢ ¢R R R4 5 1, , , Q1, and Q2 are connected to out-
puts in ¢ ¢U U3 4, , and ¢U5  as shown in Fig. 6d.

Fig. 5. (18, 6)-concentrator.

Fig. 6. Illustration of routing algorithm.
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5 CONCLUDING REMARKS

A possible extension of the results given in the paper would be to
obtain bounded capacity regular sparse crossbar concentrators. In
this case, no construction is known except for a few specific cases.
What compounds this problem is the lack of a potentially tight
explicit lower bound. Another aspect of sparse crossbar concen-
trators that has not been discussed here is their reliability. In the
case of optimal sparse crossbar concentrators, such as those de-
scribed in the paper, even a single switch failure will render them
ineffective. On the other hand, one can view an optimal sparse
crossbar as a full crossbar with faulty switches. In that case, the
constructions given here can form a basis for investigating the
reliability of full crossbars. This investigation and its results will be
deferred to another place.

APPENDIX

The Proof of Lemma 3.3
We first note that the total number of “1”s in matrix H is (n - m + 1)
m - a(n - b - 2a + 2) and the number of inputs in H is b + 2a - 2.
So, the average number of “1”s in H for each column is

n m m n

n m m n

n m m n n m m n

n m m n n m m n

n m m n m m n n

n m m n m m n n

n m m n m m n n

n m n m

- + - - - +
+ -

=
- + -

+ - +

=
+ - + - - + <

+ - + - - + ≥

%
&
K

'K

=

- + - - +
+ -

- + - - +
+ -

- + - - +

- + -

1 2 2
2 2

1
2 2

1 1 0 5

1 1 0 5

1 1

2 2
1 1

2 2

1 1

1 6 1 6

1 6

1 6 1 6

1 6 1 6

1 6 1 6

1 6 1 6

1 6 1 6

a b a
b a

a
b a a

a

a
b a

b a

if 

if 

.

.

+ -
- + - - +

- + - + -

+ - + - - + <

+ - + - - + ≥

%

&
K

'
K

1 1

1 1

1 1

1 1 0 5

1 1 0 5

1 6

1 6 1 6

1 6

1 6 1 6

1 6 1 6

m n

n m m n m m n n

n m n m m n

n m m n n m m n

n m m n n m m n

a

a

if 

if 

.

. .

We will show that the absolute value of the fractional term in
each of the expressions is bounded by 1. First, suppose

0 £ (n - m + 1)m/n - Î(n - m + 1)m/n˚ < 0.5.    (6)

It can be verified that, for 4 £ n £ 100, and 2 £ m £ 2n/3

0
1 1

1 1
0 86£

- + - - +

- + - + -
£

n m m n m m n n

n m n m m n

1 6 1 6

1 6
. .

For n > 100, (6) gives

0
1 1

1 1

0 5

1 1
£

- + - - +

- + - + -
<

- + - + -

n m m n m m n n

n m n m m n

n

n m n m m n

1 6 1 6

1 6 1 6

.
,

or

0
1 1

1 1

0 5

1 2
£

- + - - +

- + - + -
<

- + - + -
n m m n m m n n

n m n m m n

n

n m n m m n
1 6 1 6

1 6 1 6

.
,

or

0
1 1

1 1

0 5

2

2

2 2£
- + - - +

- + - + -
<

- + -

n m m n m m n n

n m n m m n

n

n m m n

1 6 1 6

1 6

.
,

or

0
1 1

1 1

0 5

1
2

2 2
2

£
- + - - +

- + - + -
<

- + -

n m m n m m n n

n m n m m n m

n

m

n n

1 6 1 6

1 6

.
.

Since n m≥ 3
2 , and n > 100, we have m

n £ 2
3 , and 1 0 01n < . , so that

0
1 1

1 1

0 5
1 0 024

9

£
- + - - +

- + - + -
<

- -
n m m n m m n n

n m n m m n

1 6 1 6

1 6

.
.

,

or

0
1 1

1 1
1£

- + - - +

- + - + -
<

n m m n m m n n

n m n m m n

1 6 1 6

1 6
.

Similarly, for

(n - m + 1)m/n - Î(n - m + 1)m/n˚ ≥ 0.5,     (7)

it can again be verified that

- <
- + - - +

- + - + -
£1

1 1

1 1
0

n m m n m m n n

n m n m m n

1 6 1 6

1 6
.

It follows that, when n m≥ 3
2 , the average number of “1”s for each

column in H is in the region [a - 1, a + 1]. Moreover, since U is an
upper triangular matrix and L is a lower triangular matrix, the
number of “1”s in U and L can be balanced using the column ex-
change operation defined in Theorem 3.2 so that each column in U

and L has Èa/2˘ (or Îa/2˚) “1”s. Finally, since J is a matrix of “1”s,

each column in J can be balanced to have a ± 1 or a “1”s by dis-

tributing m - a ± 1 of its “1”s over any Èa/2˘ (or Îa/2˚) subset of

the m - a empty rows of 2(m - a ± 1)/a columns in U or L. using
the column exchange operation defined in Theorem 3.2. It follows

that matrix 
~
H  can be balanced so that each of its columns has a ± 1

or a “1”s. �

ACKNOWLEDGMENTS

This work is supported in part by the U.S. National Science Foun-
dation under Grant No. NCR-9405539.

REFERENCES
[1] N. Alon, “Eigenvalues and Expanders,” Combinatorics, vol. 6, pp. 83-

96, 1986.
[2] L.A. Bassalygo, “Asymptotically Optimal Switching Circuits,”

Problems of Information Transactions, vol. 17, no. 3, pp. 206-211, 1981.
[3] W. Guo, “Design And Optimization of Switching Fabrics for ATM

Networks and Parallel Computer Systems,” doctoral dissertation,
Dept. of Electrical Eng., Univ. of Maryland at College Park, Aug.
1996.

[4] C. Jan and A.Y. Oruç, “Fast Self-Routing Permutation Switching
on an Asymptotically Minimum Cost Network,” IEEE Trans.
Computers, vol. 42, no. 12, pp. 1,469-1,479, Dec. 1993.

[5] G.M. Masson, “Binomial Switching Networks for Concentration
and Distribution,” IEEE Trans. Comm., vol. 25, pp. 873-883, Sept.
1977.

[6] G.A. Margulis, “Explicit Constructions of Concentrators,” Prob-
lems of Information Transactions, pp. 325-332, 1973.

[7] S. Nakamura and G.M. Masson, “Lower Bounds on Crosspoint in
Concentrators,” IEEE Trans. Computers, vol. 31, no. 12, pp. 1,173-
1,178, Dec. 1982.

[8] M.V. Chien and A.Y. Oruç, “Adaptive Binary Sorting Schemes
and Associated Interconnection Networks,” IEEE Trans. Parallel
and Distributed Systems, vol. 5, no. 6, pp. 561-571, June 1994.

[9] A.Y. Oruç and H.M. Huang, “New Results on Sparse Crossbar
Concentrators,” Proc. CISS, Princeton Univ., 1994.

[10] N. Pippenger, “Superconcentrators,” SIAM J. Computers, vol. 6,
no. 2, pp. 298-304, 1977.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:24 from IEEE Xplore.  Restrictions apply.


